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Abstract-Unidirectional solidification of a dilute alloy (tin-bismuth) in a two-dimensional rectangular 
cavity is investigated using a uniform computational grid. The energy equation is solved for the temperature 
field, while the species equation is solved for the solute distribution. A vorticity-vector potential repre- 
sentation i:r used for the governing equations for the velocity field. The constitutive equations are solved 
using a truse transient method. An Alternating Direction Implicit (ADI) approximation is employed in the 
solution scheme for the vorticity while the conjugate gradient method is used for the vector potential 
equation. The results obtained from the numerical simulations compare very well with experimental and 
numerical results for directional solidification in the literature in terms of the propagation of the sol- 
idification front as well as the free convection flow patterns in the liquid. 0 1998 Elsevier Science Ltd. All 

rights reserved. 

1. INTRODUCTION 

A growing number of theoretical and numerical analy- 
ses of solidification processes have been appearing in 
the literature. Unidirectional solidification has been 
particularly studied due to the improved material 
properties that can result. There is a continued need, 
however, to investigate these processes, especially 
when alloy solidijication is considered. The aim of the 
present work is to develop an efficient methodology 
which can account for melt convection, as well as 
interface tracking and the application of realistic inter- 
face boundary conditions, while keeping com- 
putational costs low. 

The solidification of aqueous salt solutions has been 
extensively investigated using both experimental and 
numerical approaches. Such systems behave in a man- 
ner analogous to metallic alloy melts and have the 
advantage of being transparent so that the interface 
propagation may be visualized. Zeng and Faghri [ 1,2] 
reviewed numeril:al studies in this area ; experimental 
studies are discussed in Garimella er al. [3]. 

Unlike aqueous systems, metallic melts are char- 
acterized by low Prandtl numbers, which poses sig- 
nificant difficulties for numerical solution. Among the 
first experiments to simulate directional solidification 
of low Prandtl number melts were those reported by 
Wolff and Viskanta [4]. They also obtained numerical 
results through a simplified formulation for com- 
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parison against their experiments for the solidification 
of pure tin. Raw and Lee [5] used a single-domain 
approach and a fixed grid to numerically simulate 
this problem. They solved a vorticity-vector potential 
representation of the constitutive equations along 
with an advanced weighting scheme that enabled the 
melt and solid to be treated as a single domain. Their 
results show superior agreement with experiment rela- 
tive to the numerical investigations in [4]. Recently, 
an adaptive-grid numerical algorithm was developed 
[6] to solve for pure-material solidification, which 
involves explicitly tracking the front location and re- 
mapping the grid so that it conforms to the front 
location at each time interval. This explicit handling 
of the front comes at a high computational expense. 
Single-domain methods, such as the enthalpy method, 
are less expensive and implicitly track the interface 
location, recovering its location a posteriori from the 
solution procedure. 

In alloy systems, both liquid and solid phases 
coexist over a range of temperatures and solute con- 
centrations. The interface is thus no longer a distinct, 
sharp front, due to the dependence of freezing tem- 
perature on solute concentration. The region of inter- 
spersed solid and liquid is referred to as a mushy zone. 
Most alloy systems (and indeed, some pure materials 
when subject to undercooling) exhibit a mushy zone 
during solidification. The interfaces in the mushy zone 
become so complex that a two-domain approach is 
simply not feasible [l]. There are various treatments 
of the mushy zone in the literature. These treatments 
may be generally categorized under continuum 
approaches based on well-established mixture theories 
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NOMENCLATURE 

A area Y solidification front orientation 
AR aspect ratio, H/L AC* concentration difference, 
CP specific heat capacity at constant CXl --K)IK 

pressure AT Tn-Tc 
C species concentration AH enthalpy of freezing 
D species diffusion coefficient r vorticity 

.r” 
energy 6 nondimensional temperature, 
volume fraction (T- Tc)/(T,- Tc) 

g acceleration due to gravity 0 nondimensional temperature, 
Gr Grashof number, gj&( TH - Tc)L3/v2 (T- T,)/(TH - T,) 
Gr, solutal Grashof number, gflc AC*L3/v2 1 nondimensional temperature, 
h specific enthalpy cp(T- T,)IAH 
H cavity height A, coefficient matrix in equation (28) 
k thermal conductivity V kinematic viscosity 
K segregation coefficient P density 
L cavity length nondimensional enthalpy, (h - h,)/AH 
Le Lewis number, cc/D z stream function. 
m slope of liquidus line, dT/dC 
P pressure Subscripts 
Pr Prandtl number, v/cc 0 initial condition 
4” heat flux vector C located at cold wall 
* 
4c mass flux vector H located at hot wall 
rhsij coefficient matrix in equation (28) i,j located at i, jth finite-volume center 
&I buoyancy ratio, Gr/Gr, 1, J located at Z, Jth finite-difference mesh 
Ra Rayleigh number, Gr Pr point 
Ra, solutal Rayleigh number, Gr, Pr L liquid 
RHS, coefficient matrix in equation (21) m at solidification front 
t time mix mixture 
T temperature S solid 
u, v velocity. wall located at the boundary. 

Greek symbols 
tl thermal diffusivity 
Rj coefficient matrix in equation (26) 
B expansion coefficient 

Superscripts 
n unit vector 

vector 
* reference or dimensional quantity 
n time step n. 

[7] or local averaging approaches [8, 91. Hyun et al. 
[lo] recently simulated thermal and concentration- 
driven natural convection in a low-Prandtl number 
fluid at moderate Rayleigh numbers but their study 
did not include solidification. 

The present study is the first step in creating a new 
generalized numerical model for the solution of alloy 
solidification for metallic systems including the full 
effects of thermosolutal convection. For this initial 
work, we consider the simplified case where the mushy 
zone is negligibly small and may be collapsed to a 
single, sharp interface. The aim of this paper is to 
present results for the directional solidification of a 
simple binary alloy at a low Prandtl number and high 

Rayleigh number, including the full effects of thermal 
and solutal-driven buoyancy. 

2. MATHEMATICAL FORMULATION 

2.1. Vorticity-vector potential equations 
The thermosolutal buoyancy-driven motion of a 

viscous heat-conducting fluid contained in a rec- 
tangular box is modeled as shown in Fig. 1. The fluid is 
considered subject to the Boussinesq approximation. 
One side wall of the box is at a constant hot tem- 
perature (TH) while the opposing wall is at a constant 
cold temperature (T,-). The top and bottom walls are 
considered adiabatic. The conservation of momentum 
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Liquid 

Adiabatic Wall 

Tc 

L 

Fig. 1. Computational domain 

and mass are then expressed as two nonlinear, second c?[ 
order partial differential equations [ 1 l] : Z+Gr”zVx([xQ) 

;;+(vxq xa =: -[p-r(T-T,)+p,(c*-co*)]g = - Gr”* (V x 0s) - s(V x Q) + V*f (6) 

- ;vP+@Q (1) where the definitions of vorticity and stream function 

v-ii=o. f= -vxii, v*l+J-5” (7) 

In nondimensionalizing these equations (definitions result in 

in the nomenclature), the reference density is cal- 
culated at T,. Due to the low Prandtl number and high 

a=vx$. (8) 

Rayleigh number of the flow under consideration, the For convenience, we define the buoyancy ratio as 
appropriate reference quantities for non- 
dimensionalizing velocity and time are R 

B 
_Gr,_BcAC* 

Gr bTAT’ (9) 

,*=Lz v*=“Gr’/Z 
V L (3) Thus, equation (6) becomes 

The nondimensional solute concentration is 

C= c*-co* 
AC* 

I 
g+Gr’/*Vx([xzZ) 

(4) = -Gr”2(Vx@)-&,Gr’/2(VxC~)+V2[. (10) 

The nondimensionalization of equations (1) and (2) As can be seen from equation (lo), the inclusion of 
is, thus, Gr”* into the reference velocity has led to the con- 

E+Gr”“(VxiZ)x12 
vective and buoyancy terms being weighted by Gr”*, 
while the coefficient for the transient term remains at 
unity. The selection of this characteristic velocity has 

Gr = _G,.“* Q- 2 ” Gr,,2 Cg--Gr’l* VP+V*Q. (5) 
the effect of stabilizing the solution of the vorticity 
transport equation at large Grashof numbers, since 
the numerical values of velocity are kept small. The 

Equations (2) and (5) may be re-cast in terms of solution of equation (10) subject to equation (7) con- 
the derived variables, vorticity and vector potential : stitutes the vorticity-vector potential formulation of 



2488 J. E. SIMPSON and S. V. GARIMELLA 

equations (1) and (2) for natural convection under 
conditions of high Grashof and low Prandtl numbers. 

An appropriate set of boundary conditions needs 
to be specified for the physical domain shown in Fig. 
1. For a non-slip wall, the boundary conditions to be 
imposed on vorticity and vector potential are 
described in Mallinson and de Vahl Davis [ 121 : the 
velocity is zero as are the tangential derivatives of its 
components. This leads to the following conditions 
for vorticity 

il =0 

i?W 
x=0 (,=-, 

(, =fe. (11) 

The vector potential at a plane, impermeable surface 
is normal to the surface and its gradient is zero : 

WI -_=O 
8X 

x=0 fjz=o 

i+b3 = 0. (12) 

The boundarv conditions for the other surfaces result 
from similar considerations [12]. As 
condition, the fluid must be quiescent : 

t=() $=[=o. 

2.2. The energy equation 
The nondimensionalized form of the 

equation for the conservation of energy is 

An initial temperature equal to the hot wall tem- 

an initial 

governing 

(13) 

perature is applied throughout the flow field. At the 
boundaries, either a temperature or a heat flux at the 
surface is specified, viz. 

B=l t=o 

e=1 x=0 

e=o x=L 

aejay = 0 y = 0 

aejay = 0 y = ff. (14) 

In principle, the solution of the energy equation 
(13) coupled with the solution of the vorticity-vector 
potential equations (IO), (7) and (8) would yield the 
temperature and velocity distribution throughout the 
simulation domain. However, the problem of mode- 
ling the physics of the propagation of the solidification 
front and determining its location remains to be 
addressed. We choose to do this by the robust and 
efficient enthalpy method [13], which is briefly dis- 
cussed in Section 3.2. The constitutive equation 

required for this method is the integral equation 
describing the conservation of energy in an arbitrary 
control volume : 

d”“‘;(//dI$dt = [+A’[A-@ldAdr (15) 

where 4 is the combined diffusion and convection 
energy flux vector and E is the total energy contained 
within the volume of integration. 

2.3. Solutal concentration equation 
The nondimensionalized equation for the con- 

servation of solute throughout the computational 
domain is 

1 2 +Gr”’ V*(K) = -V’C. 
Le Pr (16) 

This equation is analogous to the energy equation. 
We impose an initial solute concentration throughout 
the solution domain. At the boundaries we demand 
that there be no flux of solute : no solute may exit the 
solution domain. Thus, 

t=O c=c, 

x=o,~ acjax=o 
y=~,~ acjay=o. (17) 

Again, in principle, solution of equation (16) along 
with energy equation (15) and vorticity-vector poten- 
tial equations (lo), (7) and (8) all subject to the rel- 
evant boundary and initial conditions are enough to 
determine the solute, temperature and velocity values 
throughout the solution domain. However, the more 
general problem involving phase change demands that 
the thermodynamics of solute redistribution be 
addressed. The methodology for this is described in 
the next section. The constitutive equation for this 
method uses the integral form of equation (16) 

(18) 

in which C,,,,, is the total solute mass within the volume 
of integration and & includes both convective and 
diffusive species fluxes. 

3. NUMERICAL ANALYSIS 

3.1. Vorticity and vector potential 
The computational domain is primarily discretized 

using regularly spaced finite-difference mesh points. 
Superimposed on this grid are finite volumes which are 
required for the enthalpy method. The finite-volume 
centers are staggered with respect to the finite-differ- 
ence mesh point locations. Vorticity, velocity and 
vector potentials are calculated at the finite-difference 
mesh points. Temperature, solute concentration and 
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Fig. 2. Discretization scheme. Crosses represent locations for finite-difference calculations for the vorticity 
and vector potential equations ; circles represent the centers of control volumes used for the energy and 
species equations. Simple linear interpolation is used to calculate the velocities at the control-volume faces. 

enthalpy are evaluated at the control volume centers 
as a result of the solution of equations (15) and (18). 
This arrangement is shown in Fig. 2. The finite- 
volumes were staggered with respect to the finite- 
difference mesh points so that the most accurate values 
for velocity at the finite-volume faces could be 
obtained. These velocity values are required for the 
calculation of convective fluxes in the energy and 
species transport equations (Sections 3.2 and 3.3). 

The discretization and solution schemes are ex- 
plained in Simpson and Garimella [ 141. The approach 
used here is modified from a program [15] written for 
the solution of natural convection in a rectangular 
cavity. The essential details are that the vorticity trans- 
port equation (10) and the vector potential equation 
(7) are discretized in space using the regular finite 
difference mesh. The discretized equation for the vor- 
ticity transport equation is solved using an Alternative 
Direction Implicit (ADI) scheme [ 161. The discretized 
equation for vector potential is solved using the con- 
jugate gradient method. This is a semi-iterative 
method used to solve specific systems of linear equa- 
tions. The method is not discussed here, except to note 
that the values for vector potential at the previous 
time step are used as the initial guess values. Once 
the values of vector potential are known, the nodal 
velocities can be determined from equation (8). 

It should be noted that while governing equations 
(10) and (7) are presented in three dimensions and the 
code is capable of solving for the flow field in 3-D, 
the simulations in this paper are restricted to two 

dimensions. This is accomplished by solving only the 
z-component of vorticity and vector potential and 
thus, yielding the requisite u- and v-velocity 
components. 

3.1.1. A note on the handling of boundary conditions. 
The major difficulty in the solution procedure is the 
method by which matching conditions at the solid/ 
liquid interface are posed. An additional complexity 
is introduced in this instance since the vorticity-vector 
potential statement of the constitutive equations is 
used, with the consequential increase in difficulty of 
stating the boundary conditions at a solid wall (Sec- 
tion 2.1). The method employed in the current solu- 
tion scheme is similar to that described in [17] as 
the ‘velocity switch-off method. Since the solution 
scheme for the velocity field operates on the finite- 
difference mesh points, the aim is to determine which 
mesh points are in the solid domain, which lie in the 
liquid domain, and which can be declared to lie on 
the surface. To achieve this end, a ‘liquid fraction’ at 
the finite-difference mesh points is calculated from the 
average of the values in the four neighboring control 
volumes. The mesh point is considered liquid if this 
calculated value is greater than zero, and solid other- 
wise. Boundary points then exist at mesh points which 
are defined as solid adjacent to a mesh point which is 
defined as liquid. As shown in Fig. 3, the slope at 
which the interface is oriented is found as a conse- 
quence of a Hirt and Nichols [18] type front recon- 
struction ; the boundary conditions may then be 
applied (following refs. [5, 191) as 
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Fig. 3. Details of front reconstruction. Following Hirt and Nichols [18], the interface is considered to be 
planar in each cell (line AB). For simplicity, vorticity boundary conditions are applied on the fixed mesh 

point at the center of the cell (i.e. using line CD), irrespective of where the interface lies within the cell. 

*3 =o 
c3 =(COS-* 7) a$k3/ayz = (sin-* y)a*$3/ax*. (19) 

The slope of the interface is used to determine which 
of the two formulations for vorticity at the boundary 
is used. If the line is more horizontal than vertical then 
the first formulation is used and the converse applies. 

3.2. Energy equation 
The integral energy equation (15) is discretized 

using the finite-volume mesh. An upwind scheme is 
incorporated for the treatment of convective heat 
fluxes. This discretization may then be written as 

4;+‘-4:,,x*y 
At 

-ki,~-(1/2)(n,j *+’ -$;_‘,)/Ay] (20) 

in which [A,B] is the maximum of A and B. The 
velocities at the finite-volume faces are the inter- 

polated values from the finite-difference mesh points. 
As stated earlier, the finite-volume mesh was staggered 
with respect to the finite-difference mesh (as shown in 
Fig. 2) in order to obtain the most accurate inter- 
polated values. 

The enthalpy method is the solution scheme for 
equation (15). The thrust of the method is to use 
equation (15) to determine the cell temperature and 
enthalpy. The complete methodology for the solution 
is explained in [14] ; a brief outline is provided here. 
Essentially, equation (20) is advanced forward in time 
using Gauss-Seidel iteration with successive over 
relaxation. For this method, equation (20) reduces to 

&‘T’+CpjA{;’ = RHSfj . . (21) 

in which p denotes the inner iteration number, and 
the values at time step n are used as the first approxi- 
mation. The RHS is fully explicit at iteration p. The 
relationship between temperature and enthalpy gives 
us 

MS:, 
Cfj+ 1 

if RHS[, < 0 

if0 < RHSfI, < 1 (22) 

RHS:, + Cf, 
Cfl,fl 

, if RHSfj 2 1 

with corresponding results for the temperature (A). 
Iterations proceed until convergence, at which time 
the new values at time step (n+ 1) for temperature 
and enthalpy are declared to be those found at con- 
vergence. Convergence is assessed in the usual manner 
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with a tolerance of 10e6. In cells which contain the 
interface, the cell enthalpies are equivalent to the cell 
liquid fractions by virtue of our non- 
dimensionalization scheme. In this way, the approxi- 
mate location of the solidification front is determined 
a posteriori from this solution scheme, using Hirt and 
Nichols [ 181 reconstruction. 

3.3. Solutal concentration equation 
The discretized analog of equation (18) is 

C”i’.._C”. 
ml&L, 

At m’x”’ Ax AY 

C”+’ 
L,r+ l,j-G.:,J 

AX 

c"+! _cn+1 

-D:-(I/z),~ 
>,I L,i- I,j 

Ax 1 C”‘! _C”t:’ + Lord’+’ LlJ 
AY 

c”+ 1 _ c”+ 1 
-Di,j-(1/2) 

L,v LA- 1 1 Ay 
(23) 

The following assumptions have been made in arriving 
at this equation : 

(1) 

(2) 

The densities of the liquid and solid phases are 
constant and equal, so that a simple mixture rule 
applies, i.e., 

cmix = cSh + cLhL. (24) 

There is no diffusion in the solid (except in the 
cells that contain the interface, in which the equi- 
librium lever rule is assumed) ; the concentration 
at which the solute first solidifies is the con- 
centration at which that portion of solid remains 
for all time !. 

Solution of this finite difference equation requires a 
model for the phase transformation thermodynamics 
at the solidification front. Figure 4 shows a portion of 
the linearized Sn-Bi binary alloy equilibrium phase 
diagram [20]. ‘The important parameters are the par- 
tition or distribution coefficient, K and the slope of 
the liquidus line:, m. For the purposes of our model, 
we assume that TL E Ts z TM for all concentrations 
encountered ; thus, there is no effect of concentration 
on melting temperature and the liquid/solid interface 
remains distinct like that for a pure material. The 
significant result of this assumption is that the 
enthalpy method, as described in Section 3.2, is 

decoupled from the concentration equation and is the 
only mechanism necessary to determine the location 
of the solidification front. 

The foregoing assumptions and thermodynamic 
relations allow us to express the rate of accumulation 
of solute in an infinitesimal control volume in terms 
of the liquid concentration and the solid (or liquid) 
fraction [9] 

Gix 
- = KC, g + ;(fLCL). at (25) 

Thus, the LHS of the discretized equation for solute 
concentration becomes 

[C;:X,:,:j-C;iXi,j] AxAy = rLC”,” -cr:,Ct] AxAy 

At At 

(26) 
in which 

cc;, = [(K- l)fz+ ’ + (2 - K)f”L] 

and this is known at time step n since the liquid frac- 
tions at n + 1 are recovered directly from the solution 
of the energy equation (as outlined in Section 3.2). 
The solute concentration in the solid portion of a node 
may be found from employing the relation 

cn+, _ GE + KCnL(ft+ ’ -f”L> 
s - “+I fs (27) 

Note the elegance of this new formulation : in a com- 
pletely solid node for the time interval [n,n+ 11, no 
computation is required, since the diffusion coefficient 
for the solid material is zero. For a fully liquid node 
over [n, n + 11, fL = 1 and it can be readily seen that 
the equation reduces to the simple case of solute trans- 
fer for CL in the absence of phase change. In nodes 
which contain both solid and liquid over [n, n + l] the 
general formulation holds ; the liquid concentration is 
the working variable in the discretized equation (26) 
and the solid concentration is recovered from equa- 
tion (27). 

The discretized equation (26) is solved by Gauss- 
Seidel iteration in a manner analogous to the energy 
equation, i.e., 

[oc”, + A”,]CpL:II = rhSP,. (28) 

The solution scheme for solidification in a two-dimen- 
sional cavity subject to thermosolutal convection has 
now been fully specified. 

3.4. Grid independence study 
A comprehensive grid independence study was 

undertaken to determine the appropriate spatial dis- 
cretization, temporal discretization and iteration con- 
vergence criterion to be used. This study involved 
evaluating the solution fields of a test matrix of simu- 
lations at four different mesh spacings (Table 1) and 
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C,* = kc,* 

Fig. 4. Linearized equilibrium phase diagram for a binary alloy system. 

Table 1. Effect of grid size on the results (At = 6.250 x 10m6; E = 10m6) 

500 time steps 
21 x 16 0.04 

41 x 31 0.02 

61x46 0.02 

81 x 61 0.01 

20 000 time steps 
21 x 16 0 

41 x 31 0 

61x46 0 

81 x61 0 

-0.1281 
(0.55, 0.4) 
68% 
-0.07608 
(0.375, 0.4) 
6.2% 
-0.08115 
(0.4167,0.4) 
1.38% 
-0.08229 
(0.425, 0.4) 

-0.03305 
(0.3, 0.6) 
44% 
- 0.05937 
(0.225, 0.55) 
8.2% 

0.5697 
(0.5, 0.05)? 
70%? 
0.3357 
(0.375, 0.65) 
9.9% 
0.3727 
(0.4167, 0.65) 
2.0%1 
0.3803 
(0.4375, 0.0625)t 

0.2288 
(0.25, 0.55) 
40% 
0.3874 
(0.1,0.55) 
11% 
0.4262 

0.2475 
(0.05, 0.3) 
40% 
0.4092 
(0.025, 0.425) 
4.0% 
0.4336 

0.4632 0.3440 

17% 
0.5621 

16% 
0.4116 

2.3% 
0.5854 

2.2% 
0.4210 -0.06465 

(0.233, 0.5167) (0.2333,0.3833) (0.0883, 0.5167) 
5.3% 1.9% 5.6% 2.6% 0.9% 
- 0.0683 0.4344 0.4594 0.6009 0.425 
(0.425, 0.4) (0.2375, 0.3625) (0.075, 0.5125) 

0.4587 
(0.05, 0.4) 
37% 
0.3358 
(0.075,0.4) 
3.6% 
0.3483 
(0.0833,0.41167) 
1.8% 
0.3545 
(0.075,0.4) 

0.8656 

1.6% 
0.8795 

0.1% 
0.8805 

0.07% 
0.8811 

0.8911 

2.0% 
0.8733 

0.4% 
0.8698 

0.2% 
0.8681 

t For the 21 x 16 and 81 x 61 grids, the maximum horizontal velocity was negative and at the bottom of the cavity, for the 
41 x 31 and 61 x 46 grids, the maximum horizontal velocity was positive and at the top of the cavity. 

five time-step sizes (Table 2) at two different finish ??Iu,,,(, the maximum magnitude of the horizontal 
times, as well as four different iteration tolerances velocity component, and its location ; 
(Table 3). The quantities examined were : ??(u,,J, the maximum magnitude of the vertical vel- 

ocity component, and its location ; 
??I),,,~“, the minimum value of vector potential, and its ??0midr the value of nondimensional temperature at the 

location ; midpoint of the solution domain (0.5,0.375) ; 
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Table 2. Effect of time-step size on the results (61 x 46 mesh; E = 10m6) 

2493 

At (steps) 

Nondimensional finish time = 0.03375 
6.25 x lO-5 -0.09705 

(500) (0.3, 0.475) 
0.7% 

3.125 x lo-’ -0.09774 
(1000) 

0.2% 
1.25 x lo-’ -0.09797 

(2500) 0.1% 
0.625 x IO-’ - 0.09805 

(5000) 0.0% 
0.3125 x lo-’ -0.09807 

(10000) 

Nondimensional finish time = 0.0135 
6.25 x lo-’ -0.05937 

(2000) (0.225, 0.55) 
0.0% 

3.125 x lo-’ -0.05936 
(4000) 0.1% 

1.25 x lO-5 -0.05932 
(10000) 0.1% 

0.625 x IO-’ -0.05937 
(20 000) 

0.3125 x lO-5 not necessary 
(40 000) 

0.5169 
(0.325, 0.65) 
O.O%/,t 
0.5170t 
(0.325, 0.675) 
O.O%/,t 
0.5169 
0.1% 
0.5172 
0.0% 
0.5173 

0.3877 0.4089 
(0.1,0.55) (0.25, 0.425) 
0.1% 1 .O% 
0.3872 0.4129 
0.0% 0.2% 
0.3871 0.4136 
0.1% 1.0% 
0.3874 0.4092 

0.4798 
(0.1, 0.475) 
2.4% 
0.4916 

0.2% 0.0% 0.0% 
0.4927 0.7880 0.6306 
0.1% 0.0% 0.0% 
0.4931 0.7880 0.6305 
0.0% 0.0% 0.0% 
0.4933 0.7879 0.6303 

0.7855 0.6295 

0.3% 
0.7878 

0.1% 
0.6303 

0.5609 0.4114 

0.5% 0.3% 
0.5637 0.4127 
0.1% 0.1% 
0.5634 0.4122 
0.2% 0.1% 
0.5621 0.4116 

t The maximum horizontal velocity was positive and at the top of the cavity. 

Table 3. Effect of tolerance level on the Gauss-Seidel solution scheme results (At = 6.250 x 10m6) 

& 

500 time steps 
lo-4 -0.1028 0.4561 0.3784 0.9060 190 

(0.45,0.3667) (0.4833,0.0667) (0.7833, 0.3167) 
4.8% 0.5% 1.6% 1.8% 

1o-5 - 0.09809 0.4539 0.3846 0.8896 186 
(0.45,0.3667) (0.4067,0.0833) (0,7833,0.3167) 
2.9% 1.3% 0.7% 1.1% 

1o-6 - 0.09535 0.4481 0.3819 0.87% 191 
(0.45,0.3667) (0.45,0.0833) (0.7833,0.3167) 
0.2% 0.3% 0.1% 0.3% 

lo-’ -0.09513 0.4467 0.3816 0.8769 198 
(0.45, 0.0833) (0.45, 0.0833) (0.7833,0.3167) 

??xr, the average value of the front location. 

In the tables, the percentages quoted are a comparison 
with the result at the next level of mesh refinement. 

The results indicated that a spatial discretization of 
61 x46 mesh points (grid size h = 0.01667), a time 
step of At = 1.25 x lo-’ and a Gauss-Seidel iteration 
tolerance of E = 10e6 were the appropriate values to 
employ to fumkh an accurate solution without per- 
forming unnecessary calculations. The maximum 
change in the variables examined between the 61 x 46 
mesh and the next level of mesh refinement tested 
(81 x61 points) was 5.6%. The maximum change 
between the selected At and the next smallest time step 

tested (At = 0.625x lo-‘) was l.O%, and the 
maximum change between the selected iteration tol- 
eranceofe = 10-6andatolerances = lo-‘was0.3%. 
The thermal field changes most rapidly at the begin- 
ning of the simulation when transients are at their 
highest. Correspondingly, it was observed during the 
test simulations for determining the spatial grid size 
that 0( 100) iterations are required initially, while 0( 1) 
iteration is required later on, once the initial transients 
decrease. For this reason, simulations in Table 3 were 
performed to the one early finish time of 500 time 
steps. 

With regard to the selection of an appropriate time 
step, it appears from Table 2 that even the largest time 
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step tested (6.25 x lo-‘) is suitable ; however it was 
noted that the use of this time step and the next smaller 
time step (3.125 x 10m5) led to the algorithm failing to 
capture the front during the very first few time steps 
(where transients are at a maximum). This led to the 
selection of 1.25 x 10d5 as the appropriate time step 
for the simulations carried out in this paper. A scheme 
which dynamically evaluates the characteristic vel- 
ocity and temperature scales and selects an appro- 
priate time step at each cycle subject to limits on 
the truncation error caused is under development and 
should lead to a further reduction in the CPU burden 
involved in obtaining a solution. 

4. RESULTS AND DISCUSSION 

4.1. Directional solidjication of pure tin 
Simulations for the solidification of pure tin in a 

differentially heated cavity with an aspect ratio of0.75 
were performed. The important physical parameters 
for this case are L = 8.89 cm, Ra = 1.4x 105, 
Pr = 0.017, TH = 233”C, Tc = 229”C, AH = 59 x lo3 
J kg-’ K-‘, and C, = 255 J kg-’ K-‘. Ther- 
mophysical properties for the liquid phase are con- 
sidered to be constant and equal to those in the solid 
phase. A 61 x 46 mesh was used. The physical par- 
ameters correspond to the experiments and simu- 

lations in [4]. Other researchers [5, 61 have also per- 
formed simulations for this case. 

The isotherms and velocity vectors at time t = 0.165 
h for this simulation are shown in Fig. 5. By this 
time, the solidification front has propagated from the 
chilled wall through the cavity under the action of 
both conductive and convective heat transfer. The 
isotherms in the solid region are typical of conduction 
in a solid ; the temperature gradient is very steep as 
a result of pure conduction. The isotherms become 
vertical as they approach the cold wall. In the liquid 
domain, the isotherms exhibit a distinct reverse ‘s’ 
shaped distortion, which is characteristic of buoy- 
ancy-driven natural convection at a high Rayleigh 
number [21]. The isotherms compare well with the 
numerical results of Raw and Lee [5]. The velocity 
vectors indicate that a strong convective cell has 
developed with almost quiescent fluid at the four cor- 
ners of the liquid domain. Hot fluid rises at the hot 
wall and flows along the top of the cell toward the 
solidification front, where it is cooled and falls to the 
lower surface under the action of gravity, circulating 
once again to the foot of the hot wall. This continual 
convection of warm fluid to the uppermost segment 
of the solidification front delays its propagation along 
the cavity. As a result the solidification front is dis- 
torted into an ‘s’-shape like the fluid isotherms. In the 

0.7 

0.6 

0.0 0.2 0.4 0.6 0.8 
x/L 

0.0 0.2 0.4 0.6 0.6 1.0 

- 0.6 

Fig. 5. Velocity vectors and isotherms at t = 0.165 h. Isotherms are at intervals of A0 = 0.1. Dashed line 
is the front location. 
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Fig. 6. Velocity vectors and isotherms at t = 0.569 h. Isotherms in the melt are at the increased resolution 
of A0 = 0.02. 

absence of buoya.ncy-induced natural convection the 
solidification front would have been vertical [22]. 

The minimum value of the nondimensional stream 
function for the results in Fig. 5 was found to be 
$,in = -0.1159. The corresponding value found by 
Raw and Lee [5] was -0.1295. The streamlines also 
compare well with the numerical results of Raw and 
Lee. The stronger convection predicted by their simu- 
lation may be due to the higher Grashof number 
resulting from their selection of different reference 
properties for tin, and their use of variable properties. 
It must be noted that significant differences exist 
between material properties listed in different sources 
in the literature ; in the present work, the properties 
listed in Yao et al. [23] were used. 

Figure 6 show:s velocity vectors and isotherms at a 
later time in the simulation, t = 0.529 h. Extra iso- 
therms are shown to permit easier comparison to the 
numerical results of Zhang et al. [6]. The numerical 
results are generally in good agreement. Our results 
indicate lower-strength convection at this time. In par- 
ticular, we predict a region of low-velocity fluid at the 
bottom of the melt which does not take part in the 
main convective recirculation. A possible explanation 
for this is a difference in fluid properties used in the 
two simulations. The predicted front locations appear 
to be similar in shape for both simulations. 

Results further into the solidification process are 

shown in Fig. 7 for time t = 1.896 h. The solidification 
front has propagated much further into the melt, with 
over half of the cavity being comprised of solid tin. 
The velocity vectors show that two convective cells 
have formed at this time. The primary recirculating 
zone at the top of the cell remains similar to the 
t = 0.165 h case. A single convection cell could not be 
sustained in the presence of the sloping interface and 
weaker natural convection (due to the locally 
decreased melt size). Thus the lower cell forms, cir- 
culating in the same direction as the primary cell and 
entraining cold recirculating fluid from the primary 
cell. A similar convective pattern is indicated in the 
results of Dantzig [24] for the simulation of the melt- 
ing of pure gallium when the melt region is of a similar 
shape. The results of Raw and Lee [5] indicate stron- 
ger convection, with $,,,,” = -0.07887 compared to 
our value of -0.06329. In addition they did not indi- 
cate a breakdown to a dual-cell convective pattern at 
this time. To investigate this discrepancy, the values 
of potential in the lower convective cell from our 
results were examined. Raw and Lee predict roughly 
$ = -0.016 compared with our value of -0.0119. 
This comparison indicates that the difference between 
the two sets of results is not as dramatic as might 
be inferred from the appearance of the convection 
vectors. The difference is merely that our simulation 
predicts a lower value of potential in the lower portion 
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Fig. 7. Velocity vectors and isotherms at t = 1.896 h. 

of the cavity, leading to the mild secondary circu- 
lation, compared to the stronger convection at this 
location predicted by Raw and Lee [5]. 

The predicted solidification front locations from the 
present study are compared to experimental data [4] 
and numerical predictions in the literature [5,6] in Fig. 
8. The current predictions are in acceptable agreement 
with the experimental results. At times t = 0.077 h 
and t = 0.165 h, the solidification front has propa- 
gated quite rapidly, controlled primarily by the action 
of conduction at the chilled wall. Some convective 
effects are in play since the front is not vertical. The 
predicted front location from the numerical analysis 
at these early times is further advanced than the exper- 
imental results. At a time t = 0.077 h the mid-point 
of the front is 15% further advanced than the exper- 
imental value, and at time t = 0.165 h this value is 6%. 
This discrepancy in front location may be explained by 
the observations of Wolff and Viskanta on the thermal 
inertia of the experimental apparatus. The apparatus 
was not capable of producing an instantaneous tem- 
perature drop to T, at the cold wall at time t = 0 ; 
rather 0.033 h elapsed before the cold plate tem- 
perature reached T,. At the later times, the predicted 
front location tends to lag behind the experimentally 
determined location. Also, the numerical results fail 
to predict the increased thickness of the front at the 
bottom of the cavity. Both of these discrepancies may 

be attributed to the imperfect insulating material at 
the bottom of the experimental apparatus [4]. The 
numerical results in [5,6] exhibit similar discrepancies 
when compared to the experiments. 

The predicted temperature values along three 
different cavity heights are shown in Fig. 9 at time 
t = 0.077 h. Corresponding experimental values from 
[4] and predictions from [5] are also shown. The curves 
for y/H = 0.9 and y/H = 0.5 indicate reasonable 
agreement with the experimental data. The curves 
depart from the experimental data for larger values of 
x/L, with the experimental values being 45% larger at 
a x/L value of 0.76 but contained within 15% in the 
range 0 < x/L < 0.70. Again, thermal inertia of the 
test apparatus is a possible cause of this discrepancy. 
The curve for y/H = 0.1 is significantly different from 
the experimental results, with the numerical values 
being up to 100% larger than the experimental values 
over the range 0 < x/L < 0.8. Once again, it seems 
very likely that the source of this error is the effect of 
the imperfect insulation on the bottom of the exper- 
imental apparatus. In addition, Wolff and Viskanta 
also noted that their temperature measurements were 
subject to scatter. The curves for y/H = 0.5 and 0.9 
exhibit superior agreement to the experimental data 
than those of Raw and Lee [5] while the y/H = 0.1 
curve deviates further. 

The CPU requirement for this simulation was 
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Fig. 8. Comparison of experimentally determined [4] and numerically predicted front locations (present 
study and [5, 61) at various times. Note that no front locations are provided in [6] for the i = 1.896 h case. 

approximately 3.5 h on a DEC 3000/700 (225 MHZ, amount of solute present in the system (solid + liquid) 
SPECfp95 5.71) for a mesh of 61 x 46. This compares was examined at each time step. It was found that 
with the two-domain approach [6] which required 45 the total mass of the solute increased as the solution 
h on a SUN Spare 10 workstation for a transforming proceeded. The maximum value found, after 10000 
mesh of 42 x 42 points, and with that of Raw and time steps, was 4% larger than the initial total mass 
Lee [5] which required 0.73 h on a CDC Cyber 840 of the solute. The reason for this discrepancy is the 
supercomputer fur a single-domain solution with a errors introduced in the discretization of equation 
fixed mesh of 41 x 3 1 points. (25). 

4.2. Simulation of Sn-Bi alloy solid$cation 
Simulations for the solidification of a Sn-Bi binary 

alloy system were performed. In order to effect a trac- 
table buoyancy ratio, the dimensions of the solution 
domain and the temperature difference were altered 
from the case 01‘ pure tin above to : L = 5 cm, 
T, = 217.9”C, TH = 237.9”C. The initial solute con- 
centration was O.:j%Bi; in addition, Le = 4.0 x 103, 
K = 0.36, RB = 5.05. Thermophysical properties used 
were as those for the pure tin case, and the cavity 
aspect ratio was maintained at 0.75. An additional 
simulation was performed for the pure tin case using 
the new temperature difference and cavity dimensions 
to provide a basis for comparison for the alloy results. 
The CPU time required for 10000 time steps (real 
time t = 0.621 h) was 1.2 h. To assess the ability of 
the solution scheme to conserve solute, the total 

The isotherms and velocity vectors for this alloy 
solidification problem are shown in Fig. 10 at 
t = 0.062 h. The results are similar in character to 
those found for pure tin. However, the strength of 
convection is smaller than that at the corresponding 
time for pure tin (timin = -0.1109 as opposed to 
- 0.1111). Since bismuth has a higher density than 
tin, once the solute has been distributed throughout 
the flow field by thermal convection, it will act to 
oppose that convection and hence retard the action of 
the thermal convective cell. 

Figure 11 shows lines of constant solute con- 
centration in the fluid at this same time (0.062 h). The 
solute concentration field in Fig. 11 corresponds well 
to the results shown in Fig. 10. As can be readily seen, 
solute is rejected at the interface, since the solid forms 
at a lower concentration than the liquid with which it 
is in contact. This rejected solute descends under the 
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Fig, 9. Comparison of experimentally determined [4] and numerically predicted temperatures (present 
study and [5]) in the melt region. 

action of gravity to the bottom of the cavity, from 
where it is redistributed throughout the domain by 
the thermally-driven convective cell. Also, the mean 
concentration of solute in the melt increases with time. 
Near the top of the interface is a solute-deficient region 
of fluid. The concentration gradients agree quali- 
tatively with those of Thompson and Szekely [25] as 
well as with low-Prandtl number fluid results [IO]. 

Figure 12 shows the isotherms and velocity vectors 
at a later time, t = 0.6207 h. The results are again 
similar in character to those found for pure tin. The 
convection in the primary recirculation is weaker than 
for the pure tin case (timi,, = -0.06485 rather than 
-0.06494). Interestingly, the secondary recirculation 
exhibits higher convection ($,,,>” = -0.01432 rather 
than -0.01424). 

Figure 13 is a plot of lines of constant solute con- 
centration in the melt. The average concentration in 
the bulk of the melt has risen to approximately 0.72% 
from the initial value of 0.5% as the front has propa- 
gated into the melt, rejecting solute rich fluid at the 
interface which is then convected throughout the melt. 
The lines of constant solute concentration clearly indi- 
cate the influence of the convection patterns on the 
distribution of the solute. 

Figure 14 shows a comparison of the front locations 

for pure tin and for the Sn-Bi alloy system at several 
times. The solidification front locations for the alloy 
system have propagated slightly further into the melt, 
particularly in the top section of the domain which is 
subject to higher levels of convective heat transfer. 
This can be explained by the slightly weaker con- 
vection cell which forms. At the earlier times, the front 
locations agree more closely ; the solute gradients at 
this time have not established themselves to oppose 
the thermal driving force. It is interesting to note that 
the general shape of the interface retains its ‘s’ shaped 
characteristic in the alloy system. 

5. CONCLUSIONS 

A fixed-grid method has been formulated for the 
efficient solution of convection-conduction phase 
change problems involving pure materials and simple 
binary alloys. The enthalpy method is used to model 
the propagation of the solidification front and to solve 
for the temperatures throughout the entire domain. A 
direct solver is employed for the solution of the vel- 
ocity field. Solute concentrations are found using a 
simplified model of binary alloy solidification similar 
to the enthalpy method. Simulations (at a high Ray- 
leigh number and low Prandtl number) for the direc- 
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Fig. 14. Comparison of numerical predictions for front location as the material solidifies. Lines are at time 
intervals of 1000 time steps or 0.062 h. 

tional solidification of pure tin were performed. The 
results were found to agree well with experimental 
data [4] and with numerical solutions [5, 61. Results 
for the solidification of a Sn-O.S%Bi alloy were also 
presented and discussed. 
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